Combretastatin-A1 and derivatives: theoretical study of nonlinear optical properties
DOI:
https://doi.org/10.14295/vetor.v33i2.15742Keywords:
Combretastatin A-1, Hyperpolarizabilities, Biological activityAbstract
The non-linear optical properties, the first (β) and second (γ) hyperpolarizabilities, of the natural antitumor drug Combretastatin-A1 and derivatives were investigated by electronic structure calculations. The results show that it is possible to increase the hyperpolarizabilities magnitudes of Combretastatin-A1 by introducing artifice that lead to changes in its structure (derivatives). The use of electron donor-acceptor groups and unsaturated bridges (rich in π-electrons) is a promising strategy. The chemometric analysis of structural and electronic parameters demonstrates that there is no direct relationship between the non-linear optical properties and the biological activity of Combretastatin-A1.
Downloads
References
G. R. Pettit, G. M. Cragg, D. L. Herald, J. M. Schmidt, e P. Lohavanijaya, “Isolation and structure of combretastatin,” Canadian Journal of Chemistry, vol. 60, no. 11, pp. 1374–1376, 1982. Disponível em: https://doi.org/10.1139/v82-202
G. R. Pettit, S. B. Singh, M. L. Niven, E. Hamel, e J. M. Schmidt, “Isolation, Structure, and Synthesis of Combretastatins A-1 and B-1, Potent New Inhibitors of Microtubule Assembly, Derived from Combretum caffrum,” Journal of Natural Products, vol. 50, no. 1, pp. 119–131, 1987. Disponível em: https://doi.org/10.1021/np50049a016
C. Mousset, A. Giraud, O. Provot, A. Hamze, J. Bignon, J.-M. Liu, S. Thoret, J. Dubois, J.-D. Brion, e M. Alami, “Synthesis and antitumor activity of benzils related to combretastatin A-4,” Bioorganic & Medicinal Chemistry Letters, vol. 18, no. 11, pp. 3266–3271, 2008. Disponível em: https://doi.org/10.1016/j.bmcl.2008.04.053
F. M. Uckun, C. R. Cogle, T. L. Lin, S. Qazi, V. N. Trieu, G. Schiller, e J. M. Watts, “A Phase 1B Clinical Study of Combretastatin A1 Diphosphate (OXi4503) and Cytarabine (ARA-C) in Combination (OXA) for Patients with Relapsed or Refractory Acute Myeloid Leukemia,” Cancers, vol. 12, no. 74, pp. 1–19, 2020. Disponível em: https://doi.org/10.3390/cancers12010074
D. Sajan, J. P. Abraham, I. H. Joe, V. S. Jayakumar, J. Aubard, e O. F. Nielsen, “Molecular structure, vibrational spectra and first-order molecular hyperpolarizabilities of potential anti-cancer drug, combretastatin-A1,” Journal of Molecular Structure, vol. 889, no. 1, pp. 129–143, 2008. Disponível em: https://doi.org/10.1016/j.molstruc.2008.01.045
M. G. Vivas, D. L. Silva, R. D. F. Rodriguez, S. Canuto, J. Malinge, E. Ishow, C. R. Mendonca, e L. D. Boni, “Interpreting the First-Order Electronic Hyperpolarizability for a Series of Octupolar Push–Pull Triarylamine Molecules Containing Trifluoromethyl,” The Journal of Physical Chemistry C, vol. 119, no. 22, pp. 12589–12597, 2015. Disponível em: https://doi.org/10.1021/acs.jpcc.5b02386
A. E. A. Machado e A. A. S. Gama, “Enhanced optical nonlinearities in push-pull organic systems with polyenic-mesoionic ring mixed bridges,” Journal of the Brazilian Chemical Society, vol. 19, no. 22, pp. 1381–1387, 2008. Disponível em: https://doi.org/10.1590/S0103-50532008000700022
M. Bass, “Handbook of Optics: Volume IV - Optical properties of materials, nonlinear optics, quantum optics”. 3º Ed., New York: McGraw-Hill Professional, 2010. Disponível em: https://www.accessengineeringlibrary.com/content/book/9780071498920
W. Thiel e A. Voityuk., “Extension of MNDO to d Orbitals: Parameters and Results for the Second-Row Elements and for the Zinc Group,” The Journal of Physical Chemistry, vol. 100, no. 2, pp. 616–629, 1996. Disponível em: https://doi.org/10.1021/jp952148o; M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, e J. J. P. Stewart, “Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model,” Journal of the American Chemical Society, vol. 107, no. 13, pp. 3902–3909, 1985. Disponível em: https://doi.org/10.1021/ja00299a024; G. B. Rocha, R. O. Freire, A. M. Simas, e J. J. P. Stewart , “RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I,” Journal of Computational Chemistry, vol. 27, no. 10, pp. 1101–1111, 2006. Disponível em: https://doi.org/10.1002/jcc.20425
J. J. P. Stewart, “Optimization of parameters for semiempirical methods I. Method,” Journal of Computational Chemistry, vol. 10, no. 2, pp. 209–220, 1989. Disponível em: https://doi.org/10.1002/jcc.540100208
A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior,” Physical Review A, vol. 38, no. 6, pp. 3098–3100, 1988. Disponível em: https://doi.org/10.1103/PhysRevA.38.3098; C. Lee, W. Yang, e R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Physical Review B, vol. 37, no. 2, pp. 785–789, 1988. Disponível em: https://doi.org/10.1103/PhysRevB.37.785
A. D. McLean e G. S. Chandler, “Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18,” The Journal of Chemical Physics, vol. 72, no. 10, pp. 5639–5648, 1980. Disponível em: https://doi.org/10.1063/1.438980; R. Krishnan, J. S. Binkley, R. Seeger, e J. A. Pople, “Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions,” The Journal of Chemical Physics, vol. 72, no. 1, pp. 650–654, 1980. Disponível em: https://doi.org/10.1063/1.438955
C. C. J. Roothaan, “New Developments in Molecular Orbital Theory,” Reviews of Modern Physics, vol. 23, no. 2, pp. 69–89, 1951. Disponível em: https://doi.org/10.1103/RevModPhys.23.69
Gaussian 09, Revision D.01, M. J. Frisch et al., Gaussian, Inc., Wallingford CT, 2013.
MOPAC2012, J. J. P. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, USA, HTTP://OpenMOPAC.net (2012). Disponível em: http://openmopac.net/
J. J. P. Stewart, “Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters,” Journal of Molecular Modeling, vol. 19, pp. 1–32, 2013. Disponível em: https://doi.org/10.1007/s00894-012-1667-x
J. J. P. Stewart, “Comparison of the accuracy of semiempirical and some DFT methods for predicting heats of formation,” Journal of Molecular Modeling, vol. 10, pp. 6–12, 2004. Disponível em: https://doi.org/10.1007/s00894-003-0157-6
M. B. S. Costa e A. E. A. Machado, “Propriedades ópticas não lineares de clusters do BC5,” Química Nova, vol. 39, no. 7, pp. 807–816, 2016. Disponível em: http://dx.doi.org/10.5935/0100-4042.20160094
S. H. Vosko, L. Wilk, e M. Nusair, “Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis,” Canadian Journal of Physics, vol. 58, no. 8, pp. 1200–1211, 1980. Disponível em: https://doi.org/10.1139/p80-159
K. Raghavachari, J. S. Binkley, R. Seeger, e J. A. Pople, “Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18,” The Journal of Chemical Physics, vol. 72, no. 10, pp. 650–654, 1980. Disponível em: https://doi.org/10.1063/1.438980
I. Levine, “Quantum Chemistry”, 6th ed.; Prentice Hall: New Jersey, 2008.
P. Echenique e J. L. Alonso, “A mathematical and computational review of Hartree–Fock SCF methods in quantum chemistry,” Molecular Physics, vol. 105, no. 23-24, pp. 3057–3098, 2007. Disponível em: https://doi.org/10.1080/00268970701757875
C. E. Dykstra e P. G. Jasien, “Derivative Hartree-Fock theory to all orders,” Chemical Physics Letters, vol. 109, no. 4, pp. 388–393, 1984. Disponível em: http://dx.doi.org/10.1016/0009-2614(84)85607-9
M. Dupuis, S. Karna, “Frequency dependent nonlinear optical properties of molecules: Formulation and implementation in the HONDO program,” Journal of Computational Chemistry, vol. 12, no. 4, pp. 487–504, 1991. Disponível em: https://doi.org/10.1002/jcc.540120409
M. M. C. Ferreira, A. M. Antunes, M. S. Melgo, e P. L. O. Volpe , “Quimiometria I: calibração multivariada, um tutorial,” Química Nova, vol. 22, no. 5, pp. 724–731, 1999. Disponível em: https://doi.org/10.1590/S0100-40421999000500016
J. L. Brédas, C. Adant, P. Tackx, A. Persoons, e B. M. Pierce, “Third-Order Nonlinear Optical Response in Organic Materials: Theoretical and Experimental Aspects,” Chemical Reviews, vol. 94, no. 1, pp. 243–278, 1994. Disponível em: https://doi.org/10.1021/cr00025a008
ACD/ChemSketch, Freeware Version 14.01, Advanced Chemistry Development, Inc., Toronto, ON, Canada, www.acdlabs.com, 2013.
R. Romagnoli, P. G. Baraldi, A. Brancale, A. Ricci, E. Hamel, R. Bortolozzi, G. Basso, e G. Viola, “Convergent Synthesis and Biological Evaluation of 2-Amino-4-(3′,4′,5′-trimethoxyphenyl)-5-aryl Thiazoles as Microtubule Targeting Agents,” Journal of Medicinal Chemistry, vol. 54, no. 14, pp. 5144–5153, 2011. Disponível em: https://doi.org/10.1021%2Fjm200392p; S. Messaoudi, B. Tréguier, A. Hamze, O. Provot, J.-F. Peyrat, J. R. De Losada, J.-M. Liu, J. Bignon, J. Wdzieczak-Bakala, S. Thoret, J. Dubois, J.-D. Brion, e M. Alami, “Isocombretastatins A versus Combretastatins A: The Forgotten isoCA-4 Isomer as a Highly Promising Cytotoxic and Antitubulin Agent,” Journal of Medicinal Chemistry, vol. 52, no. 14, pp. 4538–4542, 2009. Disponível em: https://doi.org/10.1021/jm900321u; S. Ducki, G. Mackenzie, N. J. Lawrence, e J. P. Snyder, “Quantitative Structure−Activity Relationship (5D-QSAR) Study of Combretastatin-like Analogues as Inhibitors of Tubulin Assembly,” Journal of Medicinal Chemistry, vol. 48, no. 14, pp. 457–465, 2005. Disponível em: https://doi.org/10.1021/jm049444m; M. Cushman, D. Nagarathnam, D. Gopal, A. K. Chakraborti, C. M. Lin, e E. Hamel, “Synthesis and evaluation of stilbene and dihydrostilbene derivatives as potential anticancer agents that inhibit tubulin polymerization,” Journal of Medicinal Chemistry, vol. 34, no. 8, pp. 2579–2588, 1991. Disponível em: https://doi.org/10.1021/jm00112a036; K. Ohsumi, R. Nakagawa, Y. Fukuda, T. Hatanaka, Y. Morinaga, Y. Nihei, K. Ohishi, Y. Suga, Y. Akiyama, e T. Tsuji, “Novel Combretastatin Analogues Effective against Murine Solid Tumors: Design and Structure−Activity Relationships,” Journal of Medicinal Chemistry, vol. 41, no. 16, pp. 3022–3032, 1998. Disponível em: https://doi.org/10.1021/jm980101w; L. Wang, K. W. Woods, Q. Li, K. J. Barr, R. W. McCroskey, S. M. Hannick, L. Gherke, R. B. Credo, Y.-H. Hui, K. Marsh, R. Warner, J. Y. Lee, N. Zielinski-Mozng, D. Frost, S. H. Rosenberg, e H. L. Sham, “Potent, Orally Active Heterocycle-Based Combretastatin A-4 Analogues: Synthesis, Structure−Activity Relationship, Pharmacokinetics, and In Vivo Antitumor Activity Evaluation,” Journal of Medicinal Chemistry, vol. 45, no. 16, pp. 1697–711, 2002. Disponível em: https://doi.org/10.1021/jm010523x; D. Alloatti, G. Giannini, W. Cabri, I. Lustrati, M. Marzi, A. Ciacci, G. Gallo, M. O. Tinti, M. Marcellini, T. Riccioni, M. B. Guglielmi, P. Carminati, e C. Pisano, “Synthesis and Biological Activity of Fluorinated Combretastatin Analogues,” Journal of Medicinal Chemistry, vol. 51, no. 9, pp. 2708–21, 2008. Disponível em: https://doi.org/10.1021/jm701362m; D. Simoni, R. Romagnoli, R. Baruchello, R. Rondanin, G. Grisolia, M. Eleopra, M. Rizzi, M. Tolomeo, G. Giannini, D. Alloatti, M. Castorina, M. Marcellini, e C. Pisano, “Novel A-Ring and B-Ring Modified Combretastatin A-4 (CA-4) Analogues Endowed with Interesting Cytotoxic Activity,” Journal of Medicinal Chemistry, vol. 51, no. 19, pp. 6211–6215, 2008. Disponível em: https://doi.org/10.1021/jm8005004; C. Mateo, R. Álvarez, C. Pérez-Melero, R. Peláez, e M. Medarde, “Conformationally restricted macrocyclic analogues of combretastatins,” Bioorganic & Medicinal Chemistry Letters, no. 22, vol. 17, pp. 6316–6320, 2007. Disponível em: https://doi.org/10.1016/j.bmcl.2007.08.075; G. R. Pettit, S. B. Singh, M. L. Niven, E. Hamel, e J. M. Schmidt, “Isolation, Structure, and Synthesis of Combretastatins A-1 and B-1, Potent New Inhibitors of Microtubule Assembly, Derived from Combretum caffrum,” Journal of Natural Products, vol. 50, no. 1, pp. 119–31, 1987. Disponível em: https://doi.org/10.1021/np50049a016; G. R. Pettit, C. R. Anderson, D. L. Herald, M. K. Jung, D. J. Lee, E. Hamel, e R. K. Pettit, “Antineoplastic Agents. 487. Synthesis and Biological Evaluation of the Antineoplastic Agent 3,4-Methylenedioxy-5,4‘-dimethoxy-3‘-amino-Z-stilbene and Derived Amino Acid Amides,” Journal of Medicinal Chemistry, vol. 46, no. 4, pp. 525–31, 2003. Disponível em: http://dx.doi.org/10.1021/jm020204l; K. Odlo, J. Fournier-Dit-Chabert, S. Ducki, O. A. B. S. M. Gani, I. Sylte, e T. V. Hansen, “1,2,3-Triazole analogs of combretastatin A-4 as potential microtubule-binding agents,” Bioorganic & Medicinal Chemistry, vol. 18, no. 18, pp. 6874–85, 2010. Disponível em: https://doi.org/10.1016/j.bmc.2010.07.032; G. R. Pettit, B. Toki, D. L. Herald, P. Verdier-Pinard, M. R. Boyd, E. Hamel, e R. K. Pettit, “Antineoplastic Agents. 379. Synthesis of Phenstatin Phosphate,” Journal of Medicinal Chemistry, vol. 41, no. 10, pp. 1688–95, 1998. Disponível em: https://doi.org/10.1021/jm970644q.
A. G. M. Fraga, “Combretastatinas e seus Análogos: a Natureza como Fonte Alternativa para a Terapia do Câncer,” Revista Virtual Química, vol. 7, no. 2, pp. 765–790, 2015. Disponível em http://dx.doi.org/10.5935/1984-6835.20150036
A. Kamal, A. Mallareddy, M. J. Ramaiah, S. N. C. V. L. Pushpavalli, P. Suresh, C. Kishor, J. N. S. R. C. Murty, N. S. Rao, S. Ghosh, A. Addlagatta, e M. Pal-Bhadra, “Synthesis and biological evaluation of combretastatin-amidobenzothiazole conjugates as potential anticancer agents,” European Journal of Medicinal Chemistry, vol. 56, pp. 166–178, 2012. Disponível em: https://doi.org/10.1016/j.ejmech.2012.08.021
A. Ghinet, B. Rigo, J.-P. Hénichart, D. Le Broc-Ryckewaert, J. Pommery, N. Pommery, X. Thuru, B. Quesnel, e P. Gautret, “Synthesis and biological evaluation of phenstatin metabolites,” Bioorganic & Medicinal Chemistry, vol. 19, no. 20, pp. 6042–6054, 2011. Disponível em: https://doi.org/10.1016/j.bmc.2011.08.047