Numerical simulation of carbon dioxide injection into methane reservoirs including well-reservoir coupling
DOI:
https://doi.org/10.14295/vetor.v34i2.18379Keywords:
Numerical reservoir simulation, Methane reservoirs, Carbon dioxide injection, Two-dimensional flow, Well-reservoir couplingAbstract
The injection of carbon dioxide into natural gas reservoirs is a method for hydrocarbon recovery that has the advantage of contributing to the carbon dioxide sequestration, captured from human actions. In this work, numerical reservoir simulation was used to study two-dimensional flow in the xy plane in a methane reservoir subjected to CO2 injection. The Control Volume-Finite Difference (CVFD) method was applied to discretize the flow governing equations, and the Picard method was used as a linearization technique for the non-linear algebraic equations obtained in the discretization process. The numerical solution is obtained, in terms of the unknowns gas phase pressure and carbon dioxide mole fraction, by using an operator splitting and an iterative method for solving linear systems. The results were obtained for (i) the slab geometry and (ii) the one quarter of a five-spot geometry, using a well-reservoir coupling technique.
Downloads
References
N. Böttcher, A. K. Singh, O. Kolditz, e R. Liedl, “Non-isothermal, compressible gas flow for the simulation of an enhanced gas recovery application,” Journal of Computational and Applied Mathematics, vol. 236, pp. 4933–4943, 2012. Disponível em: https://doi.org/10.1016/j.cam.2011.11.013
Y. Wang, C. Vuik, e H. Hajibeygi, “Analysis of hydrodynamic trapping interactions during full-cycle injection and migration of CO2 in deep saline aquifers,” Advances in Water Resources, vol. 159, p. 104073, 2022. Disponível em: https://doi.org/10.1016/j.advwatres.2021.104073
EPA. (2024) Environmental protection agency, importance of methane. https://www.epa.gov/gmi/importance-methane.
——. (2024) Environmental protection agency, overview of greenhouse gases. https://www.epa.gov/ghgemissions/overview-greenhouse-gasescarbon-dioxide.
Z. Chen, L. Li, Y. Su, J. Liu, Y. Hao, e X. Zhang, “Investigation of CO2 -EOR and storage mechanism in injection-production coupling technology considering reservoir heterogeneity,” Fuel, vol. 368, p. 131595, 2024. Disponível em: https://doi.org/10.1016/j.fuel.2024.131595
G. Bai, J. Su, S. Fu, X. Li, X. Zhou, J. Wang, Z. Liu, e X. Zhang, “Effect of CO2 injection on the gas desorption and diffusion kinetics: An experimental study,” Energy, vol. 288, p. 129921, 2024. Disponível em:
https://doi.org/10.1016/j.energy.2023.129921
T. Ertekin, J. H. Abou-Kassem, e G. R. King, Basic Applied Reservoir Simulation, ser. SPE Textbook Series 7. Richardson: Society of Petroleum Engineers, 2001.
M. Abdelaal e M. Zeidouni, “Injection data analysis using material balance time for CO2 storage capacity estimation in deep closed saline aquifers,” Journal of Petroleum Science and Engineering, vol. 208, p. 109385, 2022. Disponível em: https://doi.org/10.1016/j.petrol.2021.109385
E. Zhao, Z. Jin, G. Li, K. Zhang, e Y. Zeng, “Numerical simulation of CO2 storage with enhanced gas recovery in depleted tight sandstone gas reservoirs,” Fuel, vol. 371, p. 131948, 2024. Disponível em:
https://doi.org/10.1016/j.fuel.2024.131948
Z. Chen, Reservoir Simulation – Mathematical Techniques in Oil Recovery. Philadelphia, USA: Society of Industrial and Applied Mathematics, 2007.
N. Ezekwe, Petroleum Reservoir Engineering Practice. Westford, USA: Prentice Hall, 2010.
T. H. Ahmed, Reservoir Engineering Handbook. Houston, USA: Gulf Professional Publishing, 2001.
K. Neeraj, “Compressibility factors for natural and sour reservoir gases by correlations and cubic equations of state,” Dissertação de mestrado, Texas Tech University, Lubbock, USA, 2004.
D. Peng e D. B. Robinson, “A new two-constante equation of state,” Industrial & Engineering Chemistry Fundamentals, vol. 15, no. 1, pp. 59–64, 1976. Disponível em: https://doi.org/10.1021/i160057a011
Y. Wu e S. Sun, “Equivalence of two models in single-phase multicomponent flow simulations,” Computer and Mathematics with Applications, no. 71, pp. 1303–1316, 2016. Disponível em: https:
//doi.org/10.1016/j.camwa.2016.02.008
G. Soave, “Equilibrium constants from a modified Redlich-Kwong equation of state,” Chemical Engineering Science, vol. 27, pp. 1197–1203, 1972. Disponível em: https://doi.org/10.1016/0009-2509(72)80096-4
J. G. S. Debossam, J. D. S. Heringer, P. T. Honório, Jr., G. Souza, e H. P. A. Souto, “Simulação numérica de escoamento monofásico com dois componentes em reservatórios de petróleo,” em XX Encontro Nacional de Modelagem Computacional, Nova Friburgo, Brasil, 2017.
J. Lohrenz, B. C. Bray, e C. R. Clark, “Calculating viscosities of reservoir fluids from their compositions,” Journal of Petroleum Technology, 1964.
A. J. Rosa, R. S. Carvalho, e J. A. D. Xavier, Engenharia de Reservatórios de Petróleo. Rio de Janeiro, Brasil: Interciência, 2006.
Y. B. S. Joia, “Simulação numérica do escoamento bidimensional considerando injeção de dióxido de carbono em reservatórios de metano,” Universidade do Estado do Rio de Janeiro, Relatório técnico, 2024.
J. G. S. Debossam, J. D. S. Heringer, G. Souza, e H. P. A. Souto, “Numerical simulation of single-phase flow in naturally fractured oil reservoirs,” Coupled Systems Mechanics, vol. 8, no. 2, pp. 129–146, 2019. Disponível em:
https://doi.org/10.12989/csm.2019.8.2.129
Y. Saad, Iterative Methods for Sparse Linear Systems, 2a ed. USA: Society of Industrial and Applied Mathematics, 2003.
Z. Chen e Z. Youqian, “Well flow models for various numerical methods,” International Journal of Numerical Analysis and Modeling, vol. 6, no. 3, pp. 375–388, 2009.
D. Peaceman, “Interpretation of well-block pressures in numerical reservoir simulation,” Society of Petroleum Engineers Journal, vol. 18, no. 3, pp. 183–194, 1978. Disponível em: https://doi.org/10.2118/6893-PA
D. W. Peaceman, “Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability,” Society of Petroleum Engineers Journal, vol. 23, no. 3, pp. 531–543, 1983. Disponível em: https://doi.org/10.2118/10528-PA
R. L. Burden e J. D. Faires, Numerical Analysis, 9a ed. Boston, USA: Cengage Learning, 2011.