Genetic Algorithm for Localizing Data Aggregators in Smart Grids

Authors

  • Gabriel da Silva Biancardi Coordenadoria de Engenharia Elétrica, Campus Vitória, Instituto Federal do Espírito Santo, Brasil
  • Mário Mestria Programa de Pós-graduação em Tecnologias Sustentáveis, Campus Vitória, Instituto Federal do Espírito Santo, Brasil https://orcid.org/0000-0001-8283-0806

DOI:

https://doi.org/10.14295/vetor.v34i1.17790

Keywords:

Smart Meter, Data Aggregators, Smart Grids, Heuristic Search and Optimization, Genetic Algorithms

Abstract

Smart grid is a new paradigm in the electric power system that uses advanced digital technology. It allows better control over the power grid, transmission of data in real-time and the transmission of energy more efficiently. The problem faced is how to distribute the information of customers in this new concept in the electrical network, in a way that reaches all consumers, with the lowest cost for communication equipment. This goal of the paper is the development of a computational program that calculates adequate solutions to the problem of allocating of the data aggregators in a smart grid, using a Genetic Algorithm. This algorithm is subdivided into the steps of creating an initial population, evaluation, selection, crossover and mutation, emulating biological evolution. In the literature, the Genetic Algorithms are commonly used to find solutions to the combinatorial optimization problems. The computational results present high performance with better solutions than literature.

Downloads

Download data is not yet available.

References

CGEE, Redes Elétricas Inteligentes: Contexto Nacional. Centro de Gestão e Estudos Estratégicos, CGEE, 2012, vol. 16, cap. 1, 172 p. Disponível em: https://www.cgee.org.br/documents/10195/11009594/Redes_Eletricas_Inteligentes_22mar13_9539.pdf/36f87ff1-43ed-4f33-9b53-5c869ace9023?version=1.6

G. Rolim, D. Passos, C. Albuquerque, e I. Moraes, “Moskou: A heuristic for data aggregator positioning in smart grids,” IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6206–6213, 2018. Disponível em: https://doi.org/10.1109/TSG.2017.2706962

M. Shokry, A. I. Awad, M. K. Abd-Ellah, e A. A. Khalaf, “Systematic survey of advanced metering infrastructure security: Vulnerabilities, attacks, countermeasures, and future vision,” Future Generation Computer Systems, vol. 136, pp. 358–377, 2022. Disponível em: https://doi.org/10.1016/j.future.2022.06.013

S. L. Qaddoori e Q. I. Ali, “An embedded and intelligent anomaly power consumption detection system based on smart metering,” IET Wireless Sensor Systems, vol. 13, no. 2, pp. 75–90, 2023. Disponível em: https://doi.org/10.1049/wss2.12054

A. Z. Carniel e M. Mestria, “Um algoritmo de otimização por reações químicas para alocação de unidades de medição fasorial,” em XXI Encontro Nacional de Modelagem Computacional e IX Encontro de Ciência e Tecnologia de Materiais, 2018. Disponível em: https://editoraessentia.iff.edu.br/index.php/enmcectm/article/view/12173/9610

E. Fadel, V. Gungor, L. Nassef, N. Akkari, M. A. Malik, S. Almasri, e I. F. Akyildiz, “A survey on wireless sensor networks for smart grid,” Computer Communications, vol. 71, pp. 22–33, 2015. Disponível em: https://doi.org/10.1016/j.comcom.2015.09.006

V. C. Gungor, B. Lu, e G. P. Hancke, “Opportunities and challenges of wireless sensor networks in smart grid,” IEEE Transactions on Industrial Electronics, vol. 57, no. 10, pp. 3557–3564, 2010. Disponível em: https://doi.org/10.1109/TIE.2009.2039455

M. R. Hossain, A. M. T. Oo, e A. B. M. S. Ali, Smart Grid. London: Springer London, 2013, pp. 23–44. Disponível em: https://doi.org/10.1007/978-1-4471-5210-1_2

A. Naamane e N. Msirdi, “Towards a smart grid communication,” Energy Procedia, vol. 83, pp. 428–433, 2015, sustainability in Energy and Buildings: Proceedings of the 7th International Conference SEB-15. Disponível em: https://www.sciencedirect.com/science/article/pii/S1876610215028271

T. Zhen, T. Elgindy, S. M. S. Alam, B. Hodge, e C. D. Laird, “Optimal placement of data concentrators for expansion of the smart grid communications network,” IET Smart Grid, vol. 2, no. 4, 8 2019. Disponível em: https://www.osti.gov/biblio/1742051

B. O. Palate, T. P. Guedes, A. Grilo-Pavani, A. Padilha-Feltrin, e J. D. Melo, “Aggregator units allocation in low voltage distribution networks with penetration of photovoltaic systems,” International Journal of Electrical Power & Energy Systems, vol. 130, p. 107003, 2021. Disponível em: https://doi.org/10.1016/j.ijepes.2021.107003

H.-C. Hsu, S.-R. Zhuang, e Y.-F. Huang, “Cost-effective data aggregation method for smart grid,” Electronics,

vol. 10, no. 23, 2021. Disponível em: https://www.mdpi.com/2079-9292/10/23/2911

M. M. Jaber, M. H. Ali, S. CB, R. R. Asaad, R. Agrawal, B. Bizu, e I. Sanz-Prieto, “Future smart grids creation and dimensionality reduction with signal handling on smart grid using targeted projection,” Sustainable Computing: Informatics and Systems, vol. 39, p. 100897, 2023. Disponível em: https://www.sciencedirect.com/science/article/pii/S2210537923000525

J. P. Astudillo León, C. L. Duenas Santos, A. M. Mezher, J. Cárdenas Barrera, J. Meng, e E. Castillo Guerra, “Exploring the potential, limitations, and future directions of wireless technologies in smart grid networks: A comparative analysis,” Computer Networks, vol. 235, p. 109956, 2023. Disponível em: https://www.sciencedirect.com/science/article/pii/S1389128623004012

G. R. Breda e M. Mestria, “Expansão otimizada e sustentável de uma rede de distribuição elétrica utilizando métodos heurísticos,” em Anais Do Encontro Nacional de Engenharia de Produção, 2020. Disponível em: https://doi.org/10.14488/enegep2020_tn_sto_344_1765_39484

S. N. Lauar, T. R. de Oliveira, e M. Mestria, “Problema de alocação de agregador de dados em redes elétricas inteligentes,” Revista SODEBRAS, vol. 15, no. 179, pp. 98–104, 2020. Disponível em: https://doi.org/10.29367/issn.1809-3957.15.2020.179.98

J. Yang, Y. Zhang, Y. Yuan, K. Ma, e J. Li, “Energy trading and power allocation strategies for relay-assisted smart grid communications: A three-stage game approach,” IEEE Transactions on Mobile Computing, vol. 22, no. 12, pp. 7438–7450, 2023. Disponível em: https://doi.org/10.1109/TMC.2022.3211408

S. Ramisetty, D. Anand, Kavita, S. Verma, N. Z. Jhanjhi, M. Masud, e M. Baz, “Energy efficient unequal fault tolerance clustering approach,” Computer Systems Science and Engineering, vol. 45, no. 2, pp. 1971–1983, 2023. Disponível em: https://doi.org/10.32604/csse.2022.021924

C. Blum e A. Roli, Hybrid Metaheuristics: An Introduction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 1–30. Disponível em: https://doi.org/10.1007/978-3-540-78295-7_1

G. Biancardi e M. Mestria, “Um algoritmo de otimização para alocar medidores inteligentes e agregadores de dados em redes elétricas inteligentes,” Revista SODEBRAS, vol. 17, no. 204, pp. 1241–1251, 2022. Disponível em: https://doi.org/10.29367/issn.1809-3957.17.2022.204.58

F. Aalamifar, G. N. Shirazi, M. Noori, e L. Lampe, “Cost-efficient data aggregation point placement for advanced metering infrastructure,” em 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm), 2014, pp. 344–349. Disponível em: https://doi.org/10.1109/SmartGridComm.2014.7007670

T. Alquthami, A. Alamoudi, A. Alsubaie, A. Jaber, N. Alshlwan, M. Anwar, e S. Husaien, “Analytics framework for optimal smart meters data processing,” Electrical Engineering, vol. 102, 09 2020. Disponível em: https://doi.org/10.1007/s00202-020-00949-0

A. Gaspar-Cunha, R. Takahashi, e C. Antunes, Manual de computação evolutiva e metaheurística, ser. Ensino. Imprensa da Universidade de Coimbra / Coimbra University Press, 2012. Disponível em: https://books.google.com.br/books?id=9Di5CwAAQBAJ

C. Blum e A. Roli, “Metaheuristics in combinatorial optimization: Overview and conceptual comparison,” ACM Comput. Surv., vol. 35, no. 3, p. 268–308, sep 2003. Disponível em: https://doi.org/10.1145/937503.937505

C. Blum, J. Puchinger, G. R. Raidl, e A. Roli, “Hybrid metaheuristics in combinatorial optimization: A survey,” Applied Soft Computing, vol. 11, no. 6, pp. 4135–4151, 2011. Disponível em: https: //doi.org/10.1016/j.asoc.2011.02.032

Published

2024-07-25

How to Cite

da Silva Biancardi, G., & Mestria, M. (2024). Genetic Algorithm for Localizing Data Aggregators in Smart Grids. VETOR - Journal of Exact Sciences and Engineering, 34(1), 130–144. https://doi.org/10.14295/vetor.v34i1.17790

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.