Mathematical modeling, design, and predictive control of a boost converter

Authors

  • Alexandre Filgueira Soares Federal University of Pelotas
  • Pedro Henrique Diehl Federal University of Pelotas
  • Paulo Jefferson Dias de Oliveira Evald Universidade Federal de Pelotas

DOI:

https://doi.org/10.14295/vetor.v34i1.16932

Keywords:

Predictive control, Boost converter, Step up converter, Deadbeat controller, Power electronics

Abstract

Boost converters are widely used to raise the output voltage to a level higher than the input voltage of various systems. These converters are commonly used in batteries for electric automobiles, regenerative braking of DC motors, quadrirotors, solar chargers, power audio amplifiers and many other devices. To do this, this device stores energy in the magnetic field of an inductor and then transfers this energy to a capacitor in such a way that the voltage of the capacitor can increase beyond the voltage of the source that supplied energy to the inductor. However, to obtain a desired voltage at the output, it is essential to use a reliable controller to regulate this system. This article presents mathematical modeling, sizing design according to established specifications and predictive control of a boost converter. The control strategy used to regulate the voltage of this converter is a deadbeat controller, which has a simple structure, but provides fast response to the closed-loop system. The numerical simulation results demonstrate the superiority of the predictive controller over a proportional-integral-derivative controller.

Downloads

Download data is not yet available.

Author Biographies

Alexandre Filgueira Soares, Federal University of Pelotas

Alexandre Filgueira Soares is studying Electronic Engineering at the Federal University of Pelotas. He has experience in the area of ​​Electronic Engineering, with an emphasis on industrial electronics, systems, electronic controls, electronic instrumentation, digital signal processing and power electronics.

Pedro Henrique Diehl, Federal University of Pelotas

Pedro Henrique Diehl is studying Control and Automation Engineering at the Federal University of Pelotas. He has experience in programming, robotics and microcontrollers.

References

E. A. Tonolo, J. W. M. Soares, E. F. R. Romaneli, e A. A. Badin, “Current sensorless MPPT with a ccm interleaved boost converter for renewable energy system,” IEEE Transactions on Power Electronics, vol. 37, no. 9, pp. 11 296–11 304, 2022. Disponível em: https://doi.org/10.1109/TPEL.2022.3166747

Y. Koç, Y. Birbir, e H. Bodur, “Non-isolated high step-up DC/DC converters – an overview,” Alexandria Engineering Journal, vol. 61, no. 2, pp. 1091–1132, 2022. Disponível em: https://doi.org/10.1016/j.aej.2021.06.071

K.-H. Chao, Y.-P. Kuo, e H.-H. Chen, “Design and implementation of a soft-switching converter with high step-up ratio,” IEEE Access, 2023. Disponível em: https://doi.org/10.1109/ACCESS.2023.3276649

M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, e B. Lehman, “Step-up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Transactions on Power Electronics, vol. 32, no. 12, pp. 9143–9178, 2017. Disponível em: https://doi.org/10.1109/TPEL.2017.2652318

J. C. Rosas-Caro, J. C. Mayo-Maldonado, R. Salas-Cabrera, A. Gonzalez-Rodriguez, E. N. Salas-Cabrera, e R. Castillo-Ibarra, “A family of DC-DC multiplier converters,” Engineering Letters, vol. 19, no. 1, pp. 57–67, 2011. Disponível em: https://www.engineeringletters.com/issues_v19/issue_1/EL_19_1_10.pdf

J.-P. Lee, H. Cha, D. Shin, K.-J. Lee, D.-W. Yoo, e J.-Y. Yoo, “Analysis and design of coupled inductors for two-phase interleaved DC-DC converters,” Journal of Power Electronics, vol. 13, no. 3, pp. 339–348, 2013. Disponível em: https://doi.org/10.6113/JPE.2013.13.3.339

K.-C. Tseng, J.-Z. Chen, J.-T. Lin, C.-C. Huang, e T.-H. Yen, “High step-up interleaved forward-flyback boost converter with three-winding coupled inductors,” IEEE Transactions on Power Electronics, vol. 30, no. 9, pp. 4696–4703, 2014. Disponível em: https://doi.org/10.1109/TPEL.2014.2364292

É. Bridi, M. J. Tiburski, W. d. A. Ayres, H. C. Sartori, e J. R. Pinheiro, “Otimização de conversores boost intercalado de alto ganho de tensão e alta eficiência,” 11th Seminar on Power Electronics and Control (SEPOC), 2023.

G.-Y. Choe, J.-S. Kim, H.-S. Kang, e B.-K. Lee, “An optimal design methodology of an interleaved boost converter for fuel cell applications,” Journal of Electrical Engineering & Technology, vol. 5, no. 2, pp. 319–328, 2010.

A. Kirubakaran, S. Jain, e R. Nema, “The PEM fuel cell system with DC/DC boost converter: Design, modeling and simulation,” International Journal of Recent Trends in Engineering, vol. 1, no. 3, pp. 157–161, 2009. Disponível em: https://doi.org/01.ijepe.01.01.05

U. Masood, M. K. Azeem, I. Ahmad, e A. ul Jabbar, “Robust adaptive nonlinear control of plugin hybrid electric vehicles for vehicle to grid and grid to vehicle power flow with hybrid energy storage system,” ISA Transactions, vol. 139, pp. 406–424, 2023. Disponível em: https://doi.org/10.1016/j.isatra.2023.03.035

T. S. Reddy, K. M. Junaid, Y. Sukhi, Y. Jeyashree, P. Kavitha, e V. Nath, “Analysis and design of wind energy conversion with storage system,” e-Prime-Advances in Electrical Engineering, Electronics and Energy, vol. 5, p. 100206, 2023. Disponível em: https://doi.org/10.1016/j.prime.2023.100206

K. Sathasivam, I. Garip, S. H. Saeed, Y. Yais, A. I. Alanssari, A. A. Hussein, J. A. Hammoode, e A. M. Lafta, “A novel MPPT method based on PSO and ABC algorithms for solar cell,” Electric Power Components and Systems, vol. 52, no. 5, pp. 653–664, 2024. Disponível em: https://doi.org/10.1080/15325008.2023.2228795

S. Kart, F. Demir, İ. Kocaarslan, e N. Genc, “Increasing PEM fuel cell performance via fuzzy-logic controlled cascaded DC-DC boost converter,” International Journal of Hydrogen Energy, vol. 54, pp. 84–95, 2024. Disponível em: https://doi.org/10.1016/j.ijhydene.2023.05.130

S. Roy, A. N. M. W. Azad, S. Baidya, M. K. Alam, e F. Khan, “Powering solutions for biomedical sensors and implants inside the human body: A comprehensive review on energy harvesting units, energy storage, and wireless power transfer techniques,” IEEE Transactions on Power Electronics, vol. 37, no. 10, pp. 12 237–12 263, 2022. Disponível em: https://doi.org/10.1109/TPEL.2022.3164890

R. Kumari, P. Pyakurel, D. Bhattacharya, B. Rai, M. Pandit, e K. S. Sherpa, “Design of smart autonomous solar panel with cascaded SEPIC-boost converter for high voltage renewable applications,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 45, no. 1, pp. 1066–1078, 2023. Disponível em: https://doi.org/10.1080/15567036.2023.2174618

M. Faizan, J. Bi, M. Liu, L. Wang, V. Stempitsky, e M. Z. Yousaf, “Long life power factor corrected LED driver with capacitive energy mechanism for street light applications,” Sustainability, vol. 15, no. 5, p. 3991, 2023. Disponível em: https://doi.org/10.3390/su15053991

M. Boi, R. A. Mastromauro, A. Floris, e A. Damiano, “Integration of sodium metal halide energy storage systems in telecommunication microgrids: performance analysis of DC-DC converter topologies,” Energies, vol. 16, no. 5, p. 2169, 2023. Disponível em: https://doi.org/10.3390/en16052169

X. Zeng, C. Chen, L. Yang, W. Chen, Q. Chen, e Y. Huang, “Design of isolated bi-directional DC-DC converter for aerospace,” em 2023 IEEE 2nd International Power Electronics and Application Symposium (PEAS). IEEE, 2023, pp. 1757–1762.

C. N. K. Reddy e C. S. Babu, “Experimental analysis of boost converter performance with nonideals for sustainable energy applications,” International Journal of Nanotechnology, vol. 20, no. 5-10, pp. 536–555, 2023. Disponível em: https://doi.org/10.1504/IJNT.2023.134011

S. B. Santra, D. Chatterjee, e Y. P. Siwakoti, “Coupled inductor based soft switched high gain bidirectional DC-DC converter with reduced input current ripple,” IEEE Transactions on Industrial Electronics, vol. 70, no. 2, pp. 1431–1443, 2023. Disponível em: https://doi.org/10.1109/TIE.2022.3156153

F. L. Luo, H. Ye, e M. H. Rashid, Digital power electronics and applications. Elsevier, 2010.

M. Veerachary e F. Taffesse, “Digital deadbeat controller for coupled inductor boost converter,” em IEEE International Conference on Power, Control and Embedded Systems (ICPCES). IEEE, 2010, pp. 1–4. Disponível em: https://doi.org/10.1109/ICPCES.2010.5698657

F. Z. Amatoul e M. Er-raki, “Modeling and simulation of electrical generation systems based on pem fuel cell-boost converter using a closed loop PI controller,” Energy Reports, vol. 9, pp. 296–308, 2023. Disponível em: https://doi.org/10.1016/j.egyr.2023.08.055

A. Daraz, A. Basit, e G. Zhang, “Performance analysis of PID controller and fuzzy logic controller for DC-DC boost converter,” PloS one, vol. 18, no. 10, p. e0281122, 2023. Disponível em: https://doi.org/10.1371/journal.pone.0281122

Q. Guo, I. Bahri, D. Diallo, e E. Berthelot, “Model predictive control and linear control of DC–DC boost converter in low voltage dc microgrid: An experimental comparative study,” Control Engineering Practice, vol. 131, p. 105387, 2023. Disponível em: https://doi.org/10.1016/j.conengprac.2022.105387

A. Vazani, H. Mirshekali, N. Mijatovic, V. Ghaffari, R. Dashti, H. R. Shaker, M. M. Mardani, e T. Dragičević, “Composite nonlinear feedback control of a DC-DC boost converter under input voltage and load variation,” International Journal of Electrical Power & Energy Systems, vol. 155, p. 109562, 2024. Disponível em: https://doi.org/10.1016/j.ijepes.2023.109562

D. R. Lopez-Flores, J. L. Duran-Gomez, e J. Vega-Pineda, “Discrete-time adaptive PID current controller for wind boost converter,” IEEE Latin America Transactions, vol. 21, no. 1, pp. 98–107, 2023. Disponível em: https://latamt.ieeer9.org/index.php/transactions/article/view/6805

P. Verma, M. N. Anwar, M. K. Ram, e A. Iqbal, “Internal model control scheme based voltage and current mode control of DC-DC boost converter,” IEEE Access, 2023.

H. Al-Baidhani, A. Sahib, e M. K. Kazimierczuk, “State feedback with integral control circuit design of DC-DC buck-boost converter,” Mathematics, vol. 11, no. 9, p. 2139, 2023. Disponível em: https://doi.org/10.3390/math11092139

M. Benydir, O. M’hand, S. Mouslim, M. Ajaamoum, K. Dahmane, e B. Imoudane, “Implementation and analysis of a fuzzy logic and sliding mode controller on a boost DC/DC converter in a PV array,” International Journal of Renewable Energy Research, vol. 13, no. 1, pp. 294–301, 2023. Disponível em: https://doi.org/10.20508/ijrer.v13i1.13862.g8683

L. Zhou, Z. Zhou, J. Qi, e W. Han, “Hybrid prediction-based deadbeat control for a high-performance shunt active power filter,” IEEE Access, vol. 11, pp. 11 118–11 131, 2023.

R. D. Middlebrook e S. Cuk, “A general unified approach to modelling switching-converter power stages,” em IEEE Power Electronics Specialists Conference (PESC). IEEE, 1976, pp. 18–34.

I. Barbi, “Modelagem de conversores CC-CC empregando modelo médio em espaço de estados,” Florianópolis: Edição do autor, 2015.

S. K. Pandey, S. L. Patil, U. M. Chaskar, e S. B. Phadke, “State and disturbance observer-based integral sliding mode controlled boost DC–DC converters,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 9, pp. 1567–1571, 2018. Disponível em: https://doi.org/10.1109/TCSII.2018.2888570

D. Hart, Power electronics. McGraw-Hill New York, 2010.

R. C. Dorf e R. H. Bishop, Modern control systems. Pearson Prentice Hall, 2005.

Published

2024-07-25

How to Cite

Soares, A. F., Diehl, P. H., & Evald, P. J. D. de O. (2024). Mathematical modeling, design, and predictive control of a boost converter. VETOR - Journal of Exact Sciences and Engineering, 34(1), 103–118. https://doi.org/10.14295/vetor.v34i1.16932

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.