A piecewise upwind scheme based on quadratic Bézier curves for discretization of convective terms

Authors

  • Pablo César Rojas Oviedo Universidade Federal de Juiz de Fora/ PPGMC
  • Bernardo Martins Rocha Departamento de Ciência da Computação, Universidade Federal de Juiz de Fora
  • Rafael Alves Bonfim de Queiroz Departamento de Computação, Universidade Federal de Ouro Preto https://orcid.org/0000-0002-3676-8914

DOI:

https://doi.org/10.14295/vetor.v33i2.16433

Keywords:

Fluid dynamics, Upwind, Convection, Normalized variable

Abstract

This work presents a new high-resolution upwind scheme built based on the concept of Bézier curves that satisfy critical stability criteria for the numerical solution of transport problems dominated by convection in computational fluid dynamics. The proposed scheme consists of a piecewise quadratic Bézier curve. The scheme is tested by solving linear advection problems and the viscous Burger problem. The results of these simulations suggest that the proposed scheme is an attractive alternative for problems dominated by convection.

Downloads

Download data is not yet available.

References

V. G. Ferreira, R. A. B. Queiroz, M. A. C. Candezano, G. A. B. Lima, L. Corrêa, C. M. Oishi, e F. L. P. Santos, “Simulation results and applications of an advection bounded scheme to practical flows,” Computational & Applied Mathematics, vol. 31, no. 3, 2012. Disponível em: https://doi.org/10.1590/S1807-03022012000300009

M. Candezano, L. Corrêa, E. Cirilo, e R. de Queiroz, “Numerical simulation of upwinding schemes applied to complex fluid dynamics equations,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 41, no. 429, pp. 1–15, 2019. Disponível em: https://doi.org/10.1007/s40430-019-1939-9

D. Zhang, C. Jiang, D. Liang, e L. Cheng, “A review on TVD schemes and a refined flux-limiter for steady-state calculations,” Journal of Computational Physics, vol. 302, pp. 114–154, 2015. Disponível em: https://doi.org/10.1016/j.jcp.2015.08.042

B. Leonard, “Simple high-accuracy resolution program for convective modelling of discontinuities,” International Journal for Numerical Methods in Fluids, vol. 8, no. 10, pp. 1291–1318, 1988. Disponível em: https://doi.org/10.1002/fld.1650081013

P. Sweby, “High resolution schemes using flux limiters for hyperbolic conservation laws,” SIAM Journal on Numerical Analysis, vol. 21, no. 5, pp. 995–1011, 1984. Disponível em: https://doi.org/10.1137/0721062

N. Waterson e H. Deconinck, “Design principles for bounded higher-order convection schemes - a unified approach,” Journal of Computational Physics, vol. 224, pp. 182–207, 2007. Disponível em: https://doi.org/10.1016/j.jcp.2007.01.021

A. Harten, “High resolution schemes for hyperbolic conservation laws,” Journal of Computational Physics, vol. 49, pp. 357–393, 1983. Disponível em: https://doi.org/10.1016/0021-9991(83)90136-5

P. Gaskell e A. Lau, “Curvature-compensated convective transport: SMART, a new boundedness-preserving transport algorithm,” International Journal for Numerical Methods in Fluids, vol. 8, no. 6, pp. 617–641, 1988. Disponível em: https://doi.org/10.1002/fld.1650080602

J.-J. Wei, B. Yu, W.-Q. Tao, Y. Kawaguchi, e H. s. Wang, “A new high-order-accurate and bounded scheme for incompressible flow,” Numerical Heat Transfer: Part B, vol. 43, no. 1, pp. 19–41, 2003. Disponível em: https://doi.org/10.1080/10407790390122005

H. Ping-Li, T. Wen-Quan, e Y. Mao-Zheng, “Refinement of the convective boundedness criterion of Gaskell and Lau,” Engineering Computations, vol. 20, no. 8, pp. 1023–1043, 2003. Disponível em: https://doi.org/10.1108/02644400310503008

H. Prautzsch, W. Boehm, e M. Paluszny, Bézier and B-spline techniques. Springer, 2002.

D. Balsara e C.-W. Shu, “Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy,” Journal of Computational Physics, vol. 160, no. 2, pp. 405–452, 2000. Disponível em: https://doi.org/10.1006/jcph.2000.6443

W. Gao, H. Li, e Y. Liu, “A high resolution NV/TVD hermite polynomial upwind scheme for convection-dominated problems,” Mathematical Methods in the Applied Sciences, vol. 36, no. 9, pp. 1107–1122, 2013. Disponível em: https://doi.org/10.1002/mma.2667

K. Morton e D. Mayers, Numerical Solution of Partial Differential Equations, 2a ed. Cambridge University Press, 2005.

V. Ferreira, R. de Queiroz, G. Lima, R. Cuenca, C. Oishi, A. J.L.F, e S. McKee, “A bounded upwinding scheme for computing convection-dominated transport problems,” Computers & Fluids, vol. 57, pp. 208–224, 2012. Disponível em: https://doi.org/10.1016/j.compfluid.2011.12.021

R. Courant, E. Isaacson, e M. Rees, “On the solution of nonlinear hyperbolic differential equations by finite differences,” Communications on Pure and Applied Mathematics, vol. 5, no. 3, pp. 243–255, 1952. Disponível em: https://doi.org/10.1002/cpa.3160050303

S. Kutluay, A. Esen, e I. Dag, “Numerical solutions of the Burgers’ equation by the least-squares quadratic B-spline finite element method,” Journal of Computational and Applied Mathematics, vol. 167, no. 1, pp. 21–33, 2004. Disponível em: https://doi.org/10.1016/j.cam.2003.09.043

Published

2023-12-23

How to Cite

Rojas Oviedo, P. C., Martins Rocha, B. ., & Alves Bonfim de Queiroz, R. (2023). A piecewise upwind scheme based on quadratic Bézier curves for discretization of convective terms. VETOR - Journal of Exact Sciences and Engineering, 33(2), 17–23. https://doi.org/10.14295/vetor.v33i2.16433

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.