Predicting reservoir quality in sandstones through neural modeling

Autores

  • Sandro da Silva Camargo Universidade Federal do Pampa, Campus Bagé - UNIPAMPA
  • Paulo Martins Engel

Palavras-chave:

Neural Modeling, Sandstones Reservoir Quality, Porosity Prediction

Resumo

Due to limited understanding of the details of many diagenetic processes, mathematical models become a very useful tool to predict reservoir quality prior to drilling. Porosity prediction is an important component in pre-drill and post-drill evaluation of reservoir quality. In this context, we have developed a mathematical model to predict porosity of sandstones reservoir systems. This model is based on artificial neural networks techniques. We propose a score to quantify their importance of each feature in prediction process. This score allows creating progressive enhancement neural models, which are simpler and more accurate than conventional neural network models and multiple regression. The main contribution of this paper is the building of a reduced model just with the most relevant features to porosity prediction. A dataset about Uerê formation sandstone reservoir was investigated. This formation is an important oil exploration target in Solimões Basin, western Brazilian Amazonia. Study results show that progressive enhancement neural network is able to predict porosity with accuracy near 90%, suggesting that this technique is a valuable tool for reservoir quality prediction.

Downloads

Não há dados estatísticos.

Biografia do Autor

Sandro da Silva Camargo, Universidade Federal do Pampa, Campus Bagé - UNIPAMPA

Instituto de Informática, Universidade Federal do Rio Grande do Sul, Doutorando em Ciência da Computação, scamargo@inf.ufrgs.br.

Paulo Martins Engel

Instituto de Informática, Universidade Federal do Rio Grande do Sul, Doutor em Engenharia, engel@inf.ufrgs.br.

Downloads

Publicado

2013-01-20

Como Citar

Camargo, S. da S., & Engel, P. M. (2013). Predicting reservoir quality in sandstones through neural modeling. VETOR - Revista De Ciências Exatas E Engenharias, 22(1), 57–70. Recuperado de https://furg.emnuvens.com.br/vetor/article/view/1337

Edição

Seção

Artigos

Artigos Semelhantes

<< < 1 2 3 4 5 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.